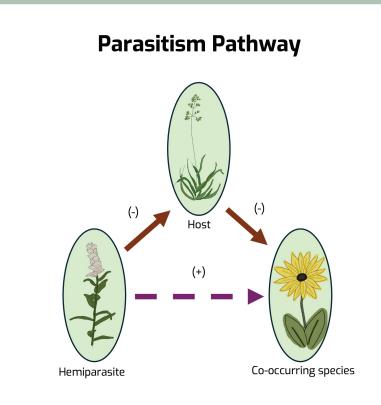
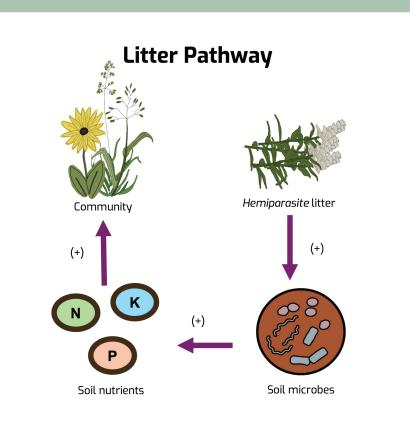


Jordan Argrett


Skinner/Arrendale Award Ph.D. Candidate, Ecology First Year ARCS Scholar

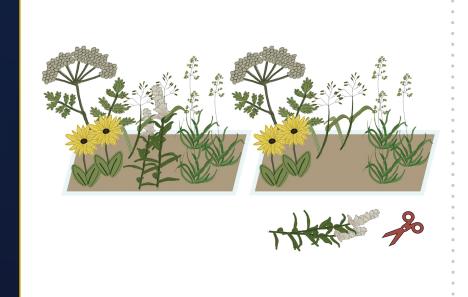


Stealing from the rich to give to the poor: Are hemiparasitic plants the "Robinhood" of sub-alpine communities?

I aim to understand how hemiparasitic plants directly and indirectly alter plant community composition, belowground soil microbial communities, and nutrient cycling.

Root-hemiparasite Ecology

Research Aim



We aim to investigate the effects of hemiparasitic Castilleja septentrionalis on plant community composition, diversity, nutrient cycling, and soil microbial communities by assessing their direct and litter-mediated effects.

Castilleja septentrionalis

Experimental Manipulations

Hemiparasite removal

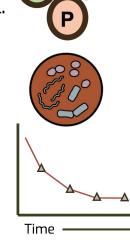
Litter addition

Plant community composition

Assess treatment effects on aboveground biomass, Shannon diversity, and species cover.

Bioavailable nutrients

Assess the effect of litter addition on the bioavailable nutrient pool.


Analysis

Microbial community composition

Assess treatment effects on microbial community composition

Litter decomposition

Assess the effect of *Castilleja septentrionalis* litter on litter decomposition rates.

Expected Results

Reduce competitively dominant species

Increase the proportion of opportunist decomposers

Increase litter decomposition and nutrient cycling

