

# Elise Bezold

Roche Award
Ph.D. Candidate, Chemistry
Second Year ARCS Scholar



# Leveraging novel disinfectants to combat antimicrobial resistance

Disinfectants serve as our first line of defense against pathogenic bacteria. Using a multidisciplinary approach, we are designing new antimicrobial agents with a novel mechanism of action to combat highly-resistant pathogens.

#### QACs are found in our everyday life



⊕N, Me Me BAC

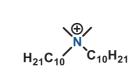


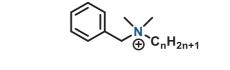


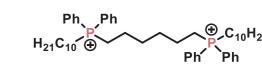
Resistance to QAC disinfectants first

Overuse and misuse of QAC disinfectants has exacerbated bacterial resistance mechanisms towards these agents

reported in the 1980s


Carden et al. ChemMedChem. **2020**, 15 (21), 1974. Mahoney et al. iScience. **2021**, 24 (4)


### Pseudomonas aeruginosa and disinfectants


Pseudomonas aeruginosa

- Panel of 50 highly resistant clinical isolates from military hospitals
- Serious threat classified by CDC and WHO
  Isolated between 2022 to 2023 from military hospitals in Texas and Hawaii
  Persisted on surfaces after treatment with peroxide or QAC-based disinfectants

When the strain can grow at concentrations above 63  $\mu\text{M}$ , we classify these as biocide resistant.







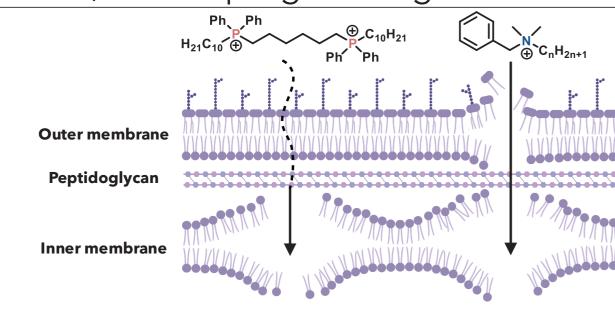
Chloride (DDAC)

Most potent commercially
available QAC

MIC ≥125 μM

Benzalkonium chloride (BAC) Leading commercially available QAC

P6P-10,10
Best-in-class QPC


available QAC

42% exhibited

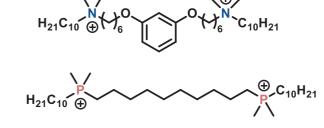
64% exhibited MIC ≥125 μM 0% exhibited MIC ≥125 μM

Michaud et al. ACS Infect. Dis. 2022, 8 (2), 387-397. MIC screen is unpublished work.

### P6P-10,10 disrupts gram-negative inner membrane



We hope our results can act as a catalyst for the design of novel disinfectants that can prevent the spread of highly-resistant bacteria.


Sanchez, C.A. et al. ACS Infect. Dis. **2024**, 10, 3868-3879.

#### Harnessing the bolaamphiphilic structure

#### Bolaamphiphilic structure:

- Two cations separated by a short carbon linker.
- Inner membrane targeting





P. aeruginosa, 2 μM

Alkyl BisQPCs
P. aeruginosa, 4 μM

**Resorcinol-based QACs** 

**Imidazole QACs** 

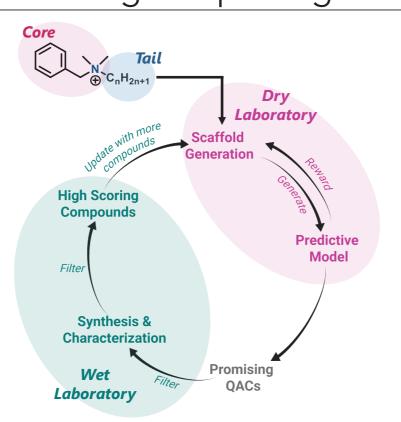
P. aeruginosa, 2 μM

N C<sub>n</sub>H<sub>2n+1</sub>

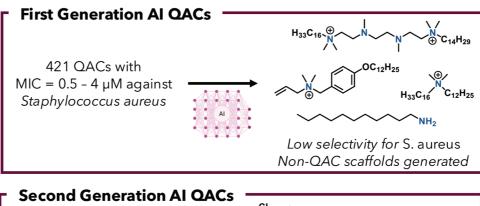
**BAC** (non-bola) *P. aeruginosa* 125 μΜ

H<sub>21</sub>C<sub>10</sub> C<sub>10</sub>

**DDAC** (non-bola) *P. aeruginosa*32 μΜ


Asante et al. ChemMedChem. 2025, e202400932. Alkyl BisQPCs submitted to RSC Med. Chem. Imidazole QACS unpublished work.

## Designing disinfectants with AI to fight superbugs


- Chemical space for molecular discovery is vast.
- Deep-learning frameworks in AI can help design molecules faster and smarter.
- Coupling models that generate molecules with those that predict bioactivity can help us focus on compounds that have high bioactivity.

Using both AI and lab experiments, we hope to accelerate the discovery of powerful disinfectants and showing AI-driven design can help tackle antimicrobial resistance.

Pan et al. In Proceedings of the 31st ACM SIGKDD Conference. p. 4740-4750.



# Designing disinfectants with AI to fight superbugs



Original 421 QACs

First Generation AI QACs

Structure-Validity Check to

retain compounds with

CI

N

H

C9H19

H13C60

C8H17

C8H17

C9H19

H17C8

C8H17

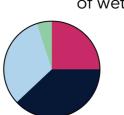
C8H17

C9H19

FOR C8H17

C9H19

C8H17


C

Making" scaffolds generated

31% of compounds were classified as "Top Compounds" based on predicted bioactivity.

New: Incremental Change New: Worth Making

This rose to **37%**, demonstrating model refinement through iterative incorporation of wet lab data.



New: Incremental Change
New: Worth Making
Too Simple/Complex
Already Made

Too Simple/ComplexNot a Compound

■ Not a QAC

■ Already Made

Ghaemi et al. Submitted to J. Chem. Inf. Model. Pan et al. In Proceedings of the 31st ACM SIGKDD Conference. p. 4740-4750.